A Lazy Version of Eppstein's K Shortest Paths Algorithm

نویسندگان

  • Víctor M. Jiménez
  • Andrés Marzal
چکیده

We consider the problem of enumerating, in order of increasing length, the K shortest paths between a given pair of nodes in a weighted digraph G with n nodes and m arcs. To solve this problem, Eppstein’s algorithm first computes the shortest path tree and then builds a graph D(G) representing all possible deviations from the shortest path. Building D(G) takes O(m+n log n) time in the basic version of the algorithm. Once it has been built, the K shortest paths can be obtained in order of increasing length in O(K logK) time. However, experimental results show that the time required to build D(G) is considerable, thereby reducing the practical interest of the algorithm. In this paper, we propose a modified version of Eppstein’s algorithm in which only the parts of D(G) which are necessary for the selection of the K shortest paths are built. This version maintains Eppstein’s worst-case running time and entails an important improvement in practical performance, according to experimental results that are also reported here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D

Grids with blocked and unblocked cells are often used to represent continuous 2D and 3D environments in robotics and video games. The shortest paths formed by the edges of 8neighbor 2D grids can be up to ≈ 8% longer than the shortest paths in the continuous environment. Theta* typically finds much shorter paths than that by propagating information along graph edges (to achieve short runtimes) w...

متن کامل

Daniel Aioanei LAZY SHORTEST PATH COMPUTATION IN DYNAMIC GRAPHS

We address the problem of single-source shortest path computation in digraphs with non-negative edge weights subjected to frequent edge weight decreases such that only some shortest paths are requested in-between updates. We optimise a recent semidynamic algorithm for weight decreases previously reported to be the fastest one in various conditions, resulting in important time savings that we de...

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

SOLVING BEST PATH PROBLEM ON MULTIMODAL TRANSPORTATION NETWORKS WITH FUZZY COSTS

Numerous algorithms have been proposed to solve the shortest-pathproblem; many of them consider a single-mode network and crispcosts. Other attempts have addressed the problem of fuzzy costs ina single-mode network, the so-called fuzzy shortest-path problem(FSPP). The main contribution of the present work is to solve theoptimum path problem in a multimodal transportation network, inwhich the co...

متن کامل

The Directed Disjoint Shortest Paths Problem

In the k disjoint shortest paths problem (k-DSPP), we are given a graph and its vertex pairs (s1, t1), . . . , (sk, tk), and the objective is to find k pairwise disjoint paths P1, . . . , Pk such that each path Pi is a shortest path from si to ti, if they exist. If the length of each edge is equal to zero, then this problem amounts to the disjoint paths problem, which is one of the well-studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003